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Abstract.   An artificial neural network (ANN) was trained to invert an
ocean color surface spectral reflectance model based on two oceanic
absorption constituents. These constituents are chlorophyll and
chromophoric dissolved organic matter (CDOM).  Limits for each
constituent were set at 0.0 to 30.0 mg/m3 for chlorophyll and 0.0 to 1.0 m-1

for CDOM.  A four layer ANN was found to give good results.  The final
sum-squared error with 1000 random spectra of 31 channels each using
vector length normalization was 9.5 x 10-2.

1. Introduction

The objective of this paper is to demonstrate the use of an artificial neural network
in inverting an ocean color model.  This task is normally difficult due to the large number
of independent variables available which can describe ocean color reflectance (Gordon et
al. 1988).  Simple methods, like color ratio algorithms seem to work best in case I waters,
but fail in more complex case II waters  (Doerffer and Fischer 1994).  More complex
methods like principal component analysis (Sathyendranath et al. 1989, Tassan 1994) can
be used for case II waters, but have a large computational cost when resolving ocean
color constituents.

Artificial neural networks have several distinct advantages compared to the above
techniques.  First, development of an inversion algorithm is not needed for the retrieval of
ocean color constituents (Dawson et al. 1993).  Second, after a neural network has been
created, processing time for parameter retrieval is known and comparatively very short
(Rumelhart and McClelland 1986).  Third, neural networks have the ability to generalize
in the face of noisy data (Wasserman 1989).

This study limited the number of ocean color constituents to chlorophyll and
CDOM.  Since chlorophyll is the main pigment of phytoplankton (Hoepffner and
Sathyendranath 1993), other pigments were not considered.  CDOM was chosen as the
opposing component since current remote sensing techniques (Tassan 1994) retrieve
CDOM only when chlorophyll concentrations remain low.  This would be a good test of
neural networks and their ability to cope with complex, non-linear relationships.
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2. Reflectance model

The semianalytical radiance model of ocean color (Gordon et al. 1988, Hoge et al.
1995) was used to generate training data for the artificial neural network.  Two
constituents (chlorophyll and CDOM) were varied and applied to the model.  Spectra
from the model was input to the network and constituents were output.  The goal was to
teach the network to map spectra to constituents.

The following equation for water-leaving radiance [ ]Lw N
 was used.  It is based on

work by Gordon et al. (1988) and for this study modified by Hoge et al. (1995).
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where p is the Fresnel reflectance of the sea surface for normal incidence; p  is the
Fresnel reflection albedo of the sea surface for irradiance from the sun and sky; m is the
index of refraction of water; Q is the ratio of upwelling radiance to upwelling radiance
toward the zenith; r is the water-air reflectance for totally diffuse irradiance; R is the
irradiance reflectance just below the sea surface; andF0  is the mean extraterrestrial solar

irradiance.  Model detail not discussed can be found in the references cited above.

A two-component model was chosen for three reasons.  First, this model
corresponds well with active-passive measurements made by AOL-POCS (Hoge et al.
1995).  Second, training a neural network on fewer components reduces the training time
and simplifies the network.  Training is also more successful with fewer components.
Finally, the active component of AOL-POCS used for constituent measurement does not
distinguish CDOM from detritus, so detritus is not included in this study (Hoge et al.
1995).

Modeled spectra was based on a 256 channel CCD diode array.  For training
purposes, the number of channels was reduced to 31 spanning 403.3 nm to 722.5 nm.
Normalizing all spectra and constituents was necessary for neural training.  The best
results were found after treating all spectra as vectors and normalizing each by vector
length.  Spectral shape remains unspoiled and spectral amplitude remains below one.
Constituents are simply normalized from zero to one based on their minimum and
maximum values.

3. Artificial neural networks

Artificial neural networks were developed in the mid 1950’s to mathematically
mimic the first-order response of the nervous system (Wasserman 1989).  The question
was how to model the output of a hypothetical neuron given some number of inputs with
varying signals applied to those inputs.  This study continued until the late 1960’s when
Minsky and Papert (1969) demonstrated that a single artificial neuron or perceptron
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(Rosenblatt 1959) could be ‘trained’ to learn a linear function mapping these given inputs
to an output.  However, ‘mappings’ requiring  non-linear relationships could not be
represented by this single perceptron.  It was believed that to accomplish non-linear
mappings, more perceptrons were needed and they needed to be layered.  This is where
the output of one perceptron is the input to another percetptron.  Since there was no
known algorithm to train multi-layer networks, wide interest in neural networks subsided
until the mid 1980’s.

Werbos (1974) discovered a technique involving vectors where one vector R
could be represented by the dot product of many vectors W.  He devised a mathematical
method of  altering those   vectors W whereby they could represent not only vector R, but
many other vectors S simultaneously.  Vectors W then acted as a ‘feature detector’,
parsing ‘features’ of vectors S that distinguished each from one another.  This technique
is known today as back-propagation (BP) of errors.

Rumelhart and McClelland (1986) rediscovered this technique (BP) and applied it
to the study of artificial neural networks.  They were then able to train multi-layer neural
networks.  With this  technique came an explosion of interest across many fields because
neural networks could now represent complex, non-linear relationships.

3.1. Network construction

For this study, a ‘multi-layer feed-forward’ artificial neural network was chosen.
This network consists of an input layer, at least one hidden layer, and an output layer.
Signals are fed to the input layer.  From there, they propagate forward through any hidden
layer(s) and then arrive at the output layer.  During this propagation the mapping from an
input signal or vector  to the output vector takes place.  The network used in this research
is described in Figure 1.
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Figure 1. A four layer, feed-forward network.  Lines denote weights and circles denote 
neurodes.
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Each layer is connected by a series of weights.  These weights are simply
variables.  Their collective purpose is to act as memory for the system.  When a network
learns to map an input vector to an output vector, this mapping is contained in the
weights.

Hidden layers are those layers found between the input layer and the output layer.
Hidden layers always contain neurodes.  Neurodes are functions which transfer or squash
(Wasserman 1989) the Net.  The Net is the dot product of inputs (x) and weights (w)
which attach to a particular neurode.  A bias is usually added to the Net.  Figure 2 is a
representation of the Net.
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Figure 2. The Net of inputs, their associated weights plus a bias.

The transfer function most commonly used is the sigmoid (Figure 3).  It has two
noteworthy qualities.  It is differentiable everywhere and exhibits a type of automatic gain
control.  When a signal is small (approaching zero), the gain of that signal when applied
to the sigmoid is high due to a steep slope.  When the signal is large, the sigmoid slope
approaches zero.  The signal is then attenuated.
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Figure 3. A typical transfer function used in an ANN.
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3.2. Back-propagation of errors

Error is loosely defined as the difference between what is known versus what is
expected.  Since we are trying to train a neural network to learn some function, the error
is calculated after each attempt to define this function.  The objective is to minimize this
error.

When training a multi-layer network, a systematic, mathematically based method
is needed to ensure this error does diminish.  As described in the previous section, the
transfer function has one criteria.  It must be differentiable everywhere (Wasserman
1989).  One example of a function that meets this criteria is the sigmoid.  It has the
following form:

( ) ( )f Net
e

i Neti
=

+ −

1

1
(2)

where the derivative is:

( ) ( ) ( )( )f Net f Net f Neti i i' = −1 (3)

and i is a particular neurode.

For a three layer network, there is one input layer, one hidden layer, and one output layer.
This means there are two levels of weights to adjust in an effort to reduce error.  To
calculate error for the output layer, one must take the difference between the desired
response (yi

Desired) and the actual response (yi
Actual).

E y yi
Output layer

i
Desired

i
Actual= − (4)

Error for the hidden layer of a three layer network is:
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(5)

where:

j     = a particular neurode from the output layer.
n    = the total number of neurodes from the output layer.
Wij  = a weight between the output layer and the hidden layer.
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3.3 Network training

Training a neural network consists of applying some fixed number of patterns (in
this case, spectra) along with their contributing constituents (chlorophyll and CDOM) to a
network in an interative manner.  After each spectrum is applied, an error is calculated for
the output layer and any hidden layer, and an adjustment is made to all weights and
biases.  These adjustments are made via equations based on the delta rule (Caudill 1992).

∆ Β ∆W E I Wi i i i
evious= +α Pr (6)

∆ Β ∆θ α θi i i i
eviousE I= + Pr (7)

where:

∆Wi = Change in weight

∆θ i = Change in bias

Β = Learning constant, 0.0 <  B <  1.0
Ei = Error

I i = Input to neurode

α α= Momentum,  0.0 <    <  1.0

∆Wi
eviousPr = Change in weight from previous interation

∆θ i
eviousPr = Change in bias from previous interation

Essentially, a particular weight or bias is changed by the amount of error found at
a connecting neurode.  The larger the error, the larger the change.  Also, the above
equations include a term for momentum.  This term ensures training continues even when
error gets stuck in a local minimum.  Think of momentum as a ball rolling at some
nominal velocity with just enough speed to roll out of any small depression it encounters.

After much experimentation, it was determined that a four layer artificial neural
network worked best when inverting a two constituent, 31 channel  ocean color model.  A
set of 1000 spectra were used  to train the network.  Initially, a step function was used to
systematically cycle through the range of constituent values.  However, results improved
when those 1000 spectra where created by varying the two constituents randomly about
their set limits.   The limits for each constituent were:

Chlorophyll 0.1   - 30.0 mg/m3

CDOM 0.01 - 1.0 m-1

Not only must constituents be normalized from zero to one, but so must spectra.  Several
normalizations of spectra were tried, but the most promising was normalizing by vector
length. If each spectra is a vector, then normalizing by vector length is found by the
following:
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where:

Sn = Normalized vector

S= Original vector

S S S Sn= = + + +Length or magnitude of vector 1
2

2
2 2...

          Training occurred by sequentially applying each of the 1000 spectra to the network.
After each individual application, an error called the sum-squared error (SSE) was
calculated.  This is simply the sum of the squared differences between the desired
response (yi

Desired) and the actual response (yi
Actual).

SSE y yi
Desired

i
Actual

i

Outputs= −=∑ ( )2
1

(9)

The sum of all the sum-squared errors is then calculated after all 1000 spectra
have been applied.  One iteration where all 1000 spectra have been sequentially trained by
the network is called a cycle or epoch.  The SSE for this study is then redefined as:

SSE y yij
Desired

ij
Actual

j

Outputs

i
= −== ∑∑ ( )2

11

1000
(10)

Figure 4 and Figure 5 show a small set of spectra which span the limits defined
above.  Spectra starting at number 0 have a chlorophyll concentration of 0.1 mg/m3 and
CDOM absorption of .01 m-1.  The chlorophyll concentration then increases in 0.3 mg/m3

increments as CDOM increases in 0.01 m-1 increments.  For example, spectrum 100 has a
chlorophyll concentration of 30 mg/m3 and CDOM absorption of 1 m-1.

Figure 4 is based on spectra normalized by dividing all spectra by the peak value
across all channels.  Moving from small concentrations of constituents to larger
concentrations of constituents creates a rapid drop in water leaving radiance.  Saturation
occurs and spectral shape changes very little.

Figure 5 is based on spectra normalized by vector length.  There is more
variability in spectra past number 10.  Also, the dynamic range of spectra has been
reduced.  Both factors contributed to a better trained network.  Therefore, our inversion
provided better results.
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Figure 4. 100 spectra normalized by peak.
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Figure 5. 100 spectra normalized by vector length.

A set of 1000 spectra were randomly generated based on the model and limits
previously discussed.   From these 1000 spectra, two training sets were generated based
on normalizing by peak channel and normalizing by vector length.  Each of these sets
were then applied to the Stuttgart Neural Network Simulator (SNNS - version 4.1).  The
following SNNS specific parameters were used:

 ANN model = BackpropMomentum
Learning rate = 0.2
Momentum = 0.5
Flat spot elimination = 0.01
Weight Initialization = -1.0 to 1.0
Cycles or epochs = 10000
Input layer size = 31
Hidden layer 1 size = 24
Hidden layer 2 size = 16
Output layer size = 2

Below are scatter plots for each method.  The first two plots show chlorophyll and
CDOM (known and calculated) based on a trained network from peak normalized spectra.
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The next two plots show chlorophyll and CDOM (known and calculated) based on a
different trained network using vector length normalized spectra.  The data set normalized
by peak channel achieved a SSE of 25.2 x 10-2.  The data set normalized by vector length
achieved a SSE of 9.5 x 10-2.  Due to a lower SSE, a higher correlation is seen when
using vector length normalized spectra.
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Figure 6. A scatter plot of known chlorophyll vs. ANN calculated chlorophyll using peak 
normalization.  
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Figure 7. A scatter plot of known CDOM vs. ANN calculated CDOM using peak normalization.



12

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Known Chlorophyll (mg/m̂ 3)

AN
N

 C
al

cu
la

te
d 

C
hl

or
op

hy
ll 

(m
g/

m̂
3)

Vector length normalized using a 4 layer ANN over 10000 epochs

SSE = 9.5 x 10-2

Figure 8. A scatter plot of known chlorophyll vs. ANN calculated chlorophyll using vector length 
normalization.
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Figure 9. A scatter plot of known CDOM vs. ANN calculated CDOM using vector length 
normalization.
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4. Conclusions

Parameter retrieval via artificial neural networks moves the burden of finding a
valid algorithm via conventional means to creating a network that will train on some
given data set.  Training a network for parameter retrieval can become a fruitless
endeavor if certain constraints are not considered.  A data set that fully represents the
parameter range desired must be generated or gathered.  All data (input and output) must
be normalized.  Network structure must be deep enough to fully represent the data.  An
appropriate network paradigm must be chosen and training variables must be set so
training converges to a solution.  In all, much time can be spent determining these items.

Training a network on modeled ocean color data is a challenge.  As constituents
increase in concentration, spectral radiance decreases (Gordon et al. 1988).  This leads to
spectra which change very little in shape.  For neural network training, this causes
problems because of the large dynamic range in spectra.  Training was found to improve
by decreasing this dynamic range but leaving the spectra shape intact.  Normalizing
spectra  by vector length achieves this goal.

It was shown that modeled ocean color spectra can be fully represented and
inverted by an artificial neural network.  The next goal is to apply real data to the
currently trained network.  It is then we will evaluate the validity of this technique.
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